
Table of Contents

1 Home
1.1 Description

1.2 Navigation

1.3 Using the Template

1.4 Acknowledgements

I Block Name

2 Revisions

3 Document Conventions
3.1 Glossary

3.2 Abbreviations

4 Introduction
4.1 Features

4.1.1 Integration

4.1.2 Performance

4.1.3 Design

4.1.4 Debugging

5 Top-Level Block Diagram
5.1 Example

6 Con�guration
6.1 Parameters

6.2 Typedefs

6.3 Interfaces

6.3.1 Interface 1

6.3.2 Interface 2

7 Protocols
7.1 Standard Protocols

7.1.1 Protocol 1

7.1.2 Protocol 2

7.2 Custom Protocols

7.2.1 Custom Protocol 1

7.2.2 Custom Protocol 2

8 Memory Map

8.1 Memory Map Table

9 Registers
9.1 User Registers

9.1.1 User Registers Table

9.2 CSRs (Con�guration/Status Registers)

9.2.1 CSRs Table

9.3 Other Registers

9.3.1 Other Registers Table

10 Clock Domains
10.1 Clock Domain Table

10.2 Annotated Block Diagram

11 Reset Domains
11.1 Reset Domains Table

11.2 Annotated Block Diagram

11.3 Custom Reset Procedures

11.3.1 Custom Reset Procedure

11.4 References to External Documents

12 Interrupts
12.1 Interrupt Table

13 Arbitration, Fairness, QoS, and Forward Progress Guarantees
13.1 Arbitration and Fairness

13.2 Quality-of-Service (QoS)

13.3 Forward Progress Guarantees

14 Debugging

15 Synthesis
15.1 Synthesis Results Table

15.2 Additional Comments (Optional)

15.2.1 Observations

16 Veri�cation
16.1 Test Environment

16.1.1 Test Environment Table

16.2 Tests

16.2.1 Tests Table

16.2.2 Test Results

16.3 Benchmarks

16.3.1 Benchmarks Table

16.3.2 Benchmarks Results

16.4 Issues and Resolutions

16.4.1 Issues and Resolutions Table

16.5 Veri�cation Summary

I.I Microarchitecture

17 Submodule 1
17.1 Description

17.2 I/O Table

17.2.1 Input Table

17.2.2 Output Table

17.3 Submodule Diagram

17.4 SystemVerilog Implementation

17.4.1 Example Code

18 Submodule 2
18.1 Description

18.2 I/O Table

18.2.1 Input Table

18.2.2 Output Table

18.3 Submodule Diagram

18.4 SystemVerilog Implementation

18.4.1 Example Code

19 Authors

1 Home

Welcome to the OpenCEHardware RTL hardware module documentation template. This document provides a
standardized structure for documenting hardware designs based on RTL. The template is designed to assist in
organizing and presenting technical documentation for hardware modules, facilitating a clear and comprehensive
description of the design.

1.1 Description

This documentation template is based on multiple sources and industry best practices. It includes detailed sections
to cover all important aspects of an RTL hardware design, from the general description of the module to speci�c
details of its HDL implementation.

Even though this template is designed for complex desings, its principles can be applied to smaller, simpler designs.
It may also guide novice hardware architects toward potential upgrades for their designs.

This template excludes any post-silicon or physical design implementation details, such as reliability �oorplans, pin
mapping, SRAM placement, chip area, power, physical debugging, etc. The focus of this template is on FPGA constraint
RTL designs.

1.2 Navigation

The template is organized into the following sections, each explaining its purpose, general structure, tips, and
examples.

The References and Revisions sections serve a dual purpose, serving both as a example and keeping the actual
revisions and references for the template.

 Revisions: Documentation on previous versions
and changes made.

 Document Conventions: De�nitions and
abbreviations used in the document.

 Introduction: General description of the block
and its features.

 Block Diagram: Visual representation of the
block's microarchitecture.

Disclaimer

Note

 Con�guration: Information about parameters,
typedefs, and RTL interfaces.

 Protocols: Details of communication and
operation protocols.

 Memory Map: Distribution of memory and
resource allocation.

 Registers: Description of the registers used in
the system.

 Clock Domains: Information about clocks and
their management in the system.

 Reset Domains: Information about reset
mechanisms and their domains.

 Interrupts: Management and handling of
interrupts in the system.

 Arbitration: Arbitration mechanisms for access
to shared resources.

 Debugging: Techniques and tools for system
debugging.

 Synthesis: Summary and results of the design
synthesis.

 Veri�cation: Test environments, veri�cation and
testbenches applied to the system.

Microarchitecture:

 Sub-module 1: Details of the �rst sub-module
of the microarchitecture.

 Sub-module 2: Details of the second sub-
module of the microarchitecture.

1.3 Using the Template

This template is designed to be downloaded and adapted to the speci�c needs of each project. It is recommended to
follow the provided structure and customize it according to the design requirements and project standards. Simpler
designs may not require documentation for all sections. In such cases, it is recommended to indicate that the
section is not needed rather than leaving it blank or excluding it from the document.

This template was created using MkDocs, a widely used tool for code documentation (e.g., ReadTheDocs). MkDocs
uses Markdown, which is excellent for creating interactive, easy-to-understand documentation. It also integrates
seamlessly with GitHub and can be published as a web page (e.g., using GitHub Pages). Additionally, it can be
rendered as a PDF, as provided in this template. MkDocs supports themes that offer further customizability and
aesthetics. This template uses Material for MkDocs, which offers a comprehensive guide for styling that is well
worth exploring.

1.4 Acknowledgements

https://www.mkdocs.org/
https://about.readthedocs.com/?ref=readthedocs.org
https://squidfunk.github.io/mkdocs-material/

This template has been developed from various sources and industry standards to ensure comprehensive and useful
documentation for RTL hardware design. Please check the References section for more information.

I. Block Name

2 Revisions

Continually maintain the following table of major and minor revisions of the speci�cation, even if using a version
control system like Git. Use a common version naming convention that can be shared with other related blocks.
Always write dates in ISO standard form, i.e., YYYY-MM-DD [1].

In this case, the example table corresponds to the actual revisions of this document.

Date (YYYY-MM-DD) Version Description of Changes Author

2024-08-07 1.0.0 Document creation. Alejandro Chavarría

2024-08-08 1.0.1 Fixed diagram and navigation. Alejandro Chavarría

3 Document Conventions

This section lists the conventions in terms of de�nitions and abbreviations that will be used throughout the
document. It allows the reader to become familiar with the authors' terminology and establishes a contract with the
reader. External links can also be added for further insights.

3.1 Glossary

List of important words:

Word: Meaning

Word: Meaning

Word: Meaning

3.2 Abbreviations

List of important abbreviations:

ABC: Meaning

ABC: Meaning

ABC: Meaning

4 Introduction

This section provides a description of the block. It brie�y covers, at a high level, what the block does and presents a
"bird's-eye" black-box view of the top-level module. It discusses the goals and non-goals of the block, how it is
intended to integrate into a larger system, lists standard protocols, highlights important performance requirements,
and touches on debugging features. It outlines the design methodology (coding language, internal and third-party
libraries and IPs), and anything else a veri�cation engineer should know before writing the �rst draft of the test plan
[1]. Most of these concepts can be expressed as a list of features, as seen in an I²C-Master Core Speci�cation [2]
example.

4.1 Features

In a list of sentences, this section expresses what the block is capable of and its most notable characteristics.

4.1.1 Integration

Functionality A

Functionality B

Functionality C

4.1.2 Performance

Functionality A

Functionality B

Functionality C

4.1.3 Design

Functionality A

Functionality B

Functionality C

4.1.4 Debugging

Functionality A

Functionality B

Functionality C

5 Top-Level Block Diagram

The top-level block diagram should indicate the block boundary and all major interfaces. Draw the top-level
submodules and show how they connect internally, but avoid displaying excessive internal implementation detail.
The structure of the top-level block diagram should correspond 1:1 with the contents of the top-level RTL module.
Avoid "free-�oating" logic at the top level (everything should be encapsulated in submodules) [1].

Markdown allows embedded HTML. With the help of diagramming software (like draw.io), you can hyperlink the
diagram to different sections of the document or even external links.

5.1 Example

Tip

CLK

RST1

0

1

Submodule 1

input 1

input 2

reset

clk

output 1

output 2
Submodule 2

input 1

input 2

reset

clk

output 2

output 1

RST2

https://app.diagrams.net/

6 Con�guration

This section includes tables of typedefs, design parameters, and interfaces. In general, it addresses any
con�gurability encoded into the design via RTL. Include the main parameters of the block (both private and shared),
the top-level module parameters, and preprocessor macros that set global constants. Do not include parameters or
macros that are derived from others. Ensure to describe any constraints and assumptions about reasonable or
default values. Only explain the types that are necessary to fully de�ne the parameters and interfaces [1].

6.1 Parameters

Parameter
Name

Type Description Default
Value

Range/Possible
Values

PARAM1 int Brief description of the
parameter.

10 0 to 100

PARAM2 float Brief description of the
parameter.

0.5 0.0 to 1.0

PARAM3 bool Brief description of the
parameter.

true true , false

6.2 Typedefs

Typedef Name Type Description

typedef_name1 struct Brief description of what the typedef de�nes.

typedef_name2 enum Brief description of what the typedef de�nes.

typedef_name3 union Brief description of what the typedef de�nes.

6.3 Interfaces

This section includes a table of top-level module interfaces. Group related ports as a single interface. Show the
directions and types of the ports, describe the interface's purpose, and follow common naming conventions.
Mention the use of any standard protocols. Avoid excessive abbreviations. The directions, types, and names of the
ports should match the RTL ports 1:1. The port directions should be from the block's perspective (as in the RTL) [1].

6.3.1 Interface 1

Port Name Direction Type Description

port_name Input type Brief description of what this port does.

port_name Output type Brief description of what this port does.

port_name In/Out type Brief description of what this port does.

Protocol Use: Mention any standard protocol used by this interface here, if applicable.

6.3.2 Interface 2

Port Name Direction Type Description

port_name Input type Brief description of what this port does.

port_name Output type Brief description of what this port does.

port_name In/Out type Brief description of what this port does.

Protocol Use: Mention any standard protocol used by this interface here, if applicable.

7 Protocols

For all interfaces that use a standard industry protocol or an internal/proprietary protocol, list them here and link to
the relevant speci�cations that govern those protocols. If any interfaces use custom protocols that are not de�ned
elsewhere, de�ne them in detail here, with one subsection per protocol. Make sure to de�ne any protocols that
involve more than one interface [1]. For custom protocols, feel free to add as much information as needed so they
can be easily understood, used, and tested.

7.1 Standard Protocols

7.1.1 Protocol 1

Description: Brief description of the protocol.

Speci�cation: Link to the protocol speci�cation.

7.1.2 Protocol 2

Description: Brief description of the protocol.

Speci�cation: Link to the protocol speci�cation.

7.2 Custom Protocols

7.2.1 Custom Protocol 1

Description: Detailed description of the custom protocol.

Involved Interfaces: List of interfaces that use this protocol.

Data Format: De�nition of the data format exchanged.

Communication Sequence: Details about the communication sequence between interfaces.

7.2.2 Custom Protocol 2

Description: Detailed description of the custom protocol.

Involved Interfaces: List of interfaces that use this protocol.

Data Format: De�nition of the data format exchanged.

Communication Sequence: Details about the communication sequence between interfaces.

http://example.com/specification1
http://example.com/specification2

8 Memory Map

This section provides a clear and organized overview of how memory is distributed in the system. It includes a table
that shows memory addresses, speci�c regions assigned to different system components (such as ROM, RAM,
peripherals, CSRs, etc.), and any relevant details about the size, access permissions, and purpose of each region.
Detailed memory resource allocation facilitates the design, development, use, and debugging of the system.

8.1 Memory Map Table

Memory Address Size Region Description

0x00000000 -
0x0000FFFF

64 KB ROM
(Firmware)

Contains the boot code and �rmware.

0x00010000 -
0x0001FFFF

64 KB RAM (Data) Stores variable data and stacks.

0x00020000 -
0x0002FFFF

64 KB Peripheral A Control and data registers of Peripheral A.

0x00030000 -
0x0003FFFF

64 KB Peripheral B Control and data registers of Peripheral B.

0x00040000 -
0x0004FFFF

64 KB RAM (Stack) Reserved space for the stack and temporary
storage.

9 Registers

This section contains all the registers of the block, organized in tables. This includes user registers, CSRs, and other
registers (e.g., debugging).

9.1 User Registers

9.1.1 User Registers Table

Register
Name

Abbreviation Address Fields and
Offsets

Access
Permissions
(HW/SW)

Description

USER_REG_1 UR1 0x0100 FIELD1 (0-7) R/W Description of
User Register 1

USER_REG_2 UR2 0x0104 FIELD1 (0-15) R Description of
User Register 2

9.2 CSRs (Con�guration/Status Registers)

List major categories of con�guration/status registers (CSRs). De�ne all CSRs here or link to an external document.
Every CSR should de�ne its name, address, �elds and offsets, hardware and software access permissions, and a
description of what each �eld does [1].

Ideally, this subsection should link to CSR documentation that is auto-generated from a single-source-of-truth source
code. An open-source industry tool used for this purpose is PeakRDL.

9.2.1 CSRs Table

CSR Name Abbreviation Address Fields and Offsets Access
Permissions
(HW/SW)

Description

CSR_NAME_1 CSR1 0x0000 FIELD1 (0-7),
FIELD2 (8-15)

R/W Description of
CSR 1

Note

https://github.com/SystemRDL/PeakRDL?tab=readme-ov-file

CSR Name Abbreviation Address Fields and Offsets Access
Permissions
(HW/SW)

Description

CSR_NAME_2 CSR2 0x0004 FIELD1 (0-3),
FIELD2 (4-7),
FIELD3 (8-15)

R/W Description of
CSR 2

9.3 Other Registers

9.3.1 Other Registers Table

Register
Name

Abbreviation Address Fields and
Offsets

Access
Permissions
(HW/SW)

Description

DEBUG_REG_1 DR1 0x0200 FIELD1 (0-7),
FIELD2 (8-15)

R/W Description of
Debug Register
1

DEBUG_REG_2 DR2 0x0204 FIELD1 (0-3),
FIELD2 (4-7),
FIELD3 (8-15)

R/W Description of
Debug Register
2

10 Clock Domains

This section provides a detailed overview of the clock domains used in the design. For each clock, indicate its
nominal frequency and the supported dynamic range. Include the same top-level block diagram as before, but this
time annotate it to show which submodules are in each clock domain. Clock domain crossings in the data path
should be explicitly drawn and encapsulated within one or more submodules. For clocks used for "backbone"
functions spanning many submodules (e.g., a CSR bus in its own clock domain), indicate this clearly and refer to
another document or appropriate section for details [1].

10.1 Clock Domain Table

Clock Domain Nominal Frequency Supported Dynamic Range

Clock Domain 1 XX MHz YY MHz - ZZ MHz

Clock Domain 2 AA MHz BB MHz - CC MHz

Clock Domain 3 DD MHz EE MHz - FF MHz

10.2 Annotated Block Diagram

CLK

RST1

0

0

Submodule 1

input 1

input 2

reset

clk

output 1

output 2
Submodule 2

input 1

input 2

reset

clk

output 2

output 1

RST2

11 Reset Domains

This section provides an overview of the reset domains used in the design. For each reset, specify whether it is
synchronous or asynchronous, its active level (high or low), and, if synchronous, the associated clock. Include the
same top-level block diagram as before, but this time annotate it to show which submodules are in each reset
domain. Reset domain crossings in the datapath should be explicitly shown and encapsulated within one or more
submodules. For resets used for "backbone" functions that span multiple submodules (e.g., a CSR bus in its own
reset domain), clearly indicate this and defer detailed information to an appropriate document or section. If the reset
protocol is custom to this block, include a subsection de�ning the relevant procedures. Otherwise, cite other
documents that provide these details [1].

11.1 Reset Domains Table

Reset
Name

Synchronous/Asynchronous Active
High/Low

Associated Clock (if
synchronous)

Description

RESET_1 Synchronous Active Low CLK1 Description of
RESET_1

RESET_2 Asynchronous Active High N/A Description of
RESET_2

11.2 Annotated Block Diagram

CLK

RST1

0

0

Submodule 1

input 1

input 2

reset

clk

output 1

output 2
Submodule 2

input 1

input 2

reset

clk

output 2

output 1

RST2

11.3 Custom Reset Procedures

If the reset protocol is custom for this block, provide a detailed description of the procedures and mechanisms here.
Otherwise, cite the relevant documentation.

11.3.1 Custom Reset Procedure

1. Step 1 of the procedure.

2. Step 2 of the procedure.

3. Step 3 of the procedure.

11.4 References to External Documents

For standard reset protocols, refer to the following documents:

Standard Reset Protocol Document 1

Standard Reset Protocol Document 2

12 Interrupts

This section describes the interrupts implemented in the design. For each interrupt, specify its name, the associated
interrupt controller, number, priority, type (e.g., level or edge), triggering mechanism (e.g., rising/falling edge or
high/low level), handling method (e.g., synchronous or asynchronous), and a brief description.

12.1 Interrupt Table

Interrupt
Name

Controller Number Priority Type Triggers Handling

IRQ_1 Main 0 1 Edge Falling Synchronous

IRQ_2 Aux 1 3 Level High Asynchronous

13 Arbitration, Fairness, QoS, and Forward Progress
Guarantees

This section addresses how the design handles arbitration between multiple tra�c classes or concurrent transaction
types that share resources or interfaces. It outlines the arbitration policies, fairness properties, QoS features, and
forward progress guarantees [1].

13.1 Arbitration and Fairness

De�ne the arbitration policy for shared resources or interfaces. Describe how multiple tra�c classes or transaction
types are prioritized and how fairness is ensured. If applicable, detail any con�gurability features that allow
adjustments to the arbitration policy or QoS settings. Clearly state if any tra�c classes are unfairly treated and
discuss the implication [1].

Arbitration Policy: Describe the policy used for arbitration (e.g., round-robin, priority-based).

Fairness: Explain how fairness is maintained among tra�c classes.

Con�gurability: Detail any features that allow users to control arbitration or QoS.

13.2 Quality-of-Service (QoS)

Discuss the QoS mechanisms implemented in the design. Describe how the system ensures different levels of
service based on tra�c class or transaction type, and how these mechanisms impact system performance [1].

QoS Features: List and describe the QoS features supported by the design.

Impact on Performance: Explain how QoS affects the performance of the system.

13.3 Forward Progress Guarantees

Ensure that the design provides forward progress guarantees, meaning that it avoids deadlock and livelock
conditions. State any assumptions about the external system required to guarantee forward progress. Provide a
high-level outline of the proof for these guarantees, and indicate if it can be formally veri�ed [1].

Deadlock and Livelock Prevention: Describe how the design prevents deadlock and livelock.

Assumptions: State any assumptions needed for forward progress.

Proof Outline: Provide a brief outline of the proof or veri�cation approach for forward progress guarantees.

14 Debugging

This section describes the debugging mechanisms and non-mission-mode features available in the design. It
includes details about debugging registers, debugging interfaces, and any special features that facilitate diagnostics
and testing.

Testbenches do not count as debugging mechanisms!

Warning

15 Synthesis

This section presents the synthesis results of the design across different FPGAs. It includes a table displaying
performance, area, and other relevant parameters for each evaluated FPGA.

15.1 Synthesis Results Table

FPGA Maximum
Frequency
(MHz)

Area
(LUTs)

Area (FFs) Area
(BRAMs)

Area
(DSPs)

Comments

FPGA_A 200 5000 3000 10 20 Description
of
performance
and area for
FPGA_A

FPGA_B 250 4800 2800 12 18 Description
of
performance
and area for
FPGA_B

FPGA_C 180 5200 3100 8 22 Description
of
performance
and area for
FPGA_C

15.2 Additional Comments (Optional)

In this section, provide additional comments on the synthesis results, including observations on performance,
optimization, and recommendations for future improvements or adjustments.

15.2.1 Observations

Performance: Comment on the differences in maximum frequency achieved across different FPGAs and possible
reasons for these differences.

Area: Analyze how the area used varies among different FPGAs and if there are opportunities for optimization.

Recommendations: Offer recommendations for design improvements based on the synthesis results.

16 Veri�cation

This section details the types of tests applied to the block and presents relevant benchmark results.

16.1 Test Environment

Describe the tools, simulators, or testbeds used for veri�cation and any relevant con�guration or parameters for the
tests.

16.1.1 Test Environment Table

Tool Version Relevant Con�guration

Simulator X 2024.1 Con�guration A, Parameter B

Tool Y 3.2.1 Con�guration C, Parameter D

16.2 Tests

Describe the different types of tests applied to the block, such as functional tests, regression tests, and speci�c
veri�cation methodologies used (e.g., simulation, formal veri�cation, emulation).

16.2.1 Tests Table

Test Type Description Tools Used

Functional Test Veri�cation that the block meets functional speci�cations. Simulator X, Tool Y

Regression Test Ensuring recent changes do not introduce errors in the design. Simulator Z, Test Suite W

Formal Veri�cation Rigorous mathematical veri�cation of design properties. Tool A, Tool B

16.2.2 Test Results

Show the results of the tests applied to the system, ideally in a table format.

16.3 Benchmarks

Include benchmark results, such as performance metrics, comparisons with expected outcomes, and block
performance under different conditions.

16.3.1 Benchmarks Table

Metric Value Comments

Maximum Frequency 200 MHz Meets performance expectations.

Latency 10 ns Within acceptable limits.

Resource Usage 5000 LUTs, 3000 FFs E�cient in terms of utilized resources.

16.3.2 Benchmarks Results

Show the results of the benchmarks applied to the system, ideally in a table format.

16.4 Issues and Resolutions

Brief discussion of any issues found during veri�cation and how they were resolved.

16.4.1 Issues and Resolutions Table

Issue Description Resolution

Simulation Error Results inconsistent with expectations. Adjusted simulator con�guration.

Timing Error Deviation in response time. Optimized design in critical path.

16.5 Veri�cation Summary

Provide a brief summary of the block's results from the veri�cation and benchmark processes.

I.I Microarchitecture

17 Submodule 1

17.1 Description

Provide a description of the submodule here. Explain its function, role within the larger system, and any important
design considerations or features.

17.2 I/O Table

Detail the submodule's input and output signals, including their name, direction, type, and description.

17.2.1 Input Table

Input Name Direction Type Description

input_signal_1 Input logic Description of input_signal_1

input_signal_2 Input logic Description of input_signal_2

17.2.2 Output Table

Output Name Direction Type Description

output_signal_1 Output logic Description of output_signal_1

output_signal_2 Output logic Description of output_signal_2

17.3 Submodule Diagram

Include a diagram of the submodule here, showing its inputs, outputs, and how they are connected internally. Ensure
the diagram is clear and properly labeled to facilitate understanding.

17.4 SystemVerilog Implementation

Include a brief description of the SystemVerilog code for the submodule, highlighting key parts of the
implementation if needed for a clearer understanding.

Mkdocs allows a plethora of highlighting and cues for better code documentation. Read more.

17.4.1 Example Code

input 1

input 2

rst

clk

output 1

output 2

Tip

module Submodule (

input logic input_signal_1,

input logic input_signal_2,

output logic output_signal_1,

output logic output_signal_2

);

// Description of the submodule's functionality

// Module logic

always_ff @(posedge clk) begin

// Implementation of the functionality

end

endmodule

https://squidfunk.github.io/mkdocs-material/reference/code-blocks/?h=code

18 Submodule 2

18.1 Description

Provide a description of the submodule here. Explain its function, role within the larger system, and any important
design considerations or features.

18.2 I/O Table

Detail the submodule's input and output signals, including their name, direction, type, and description.

18.2.1 Input Table

Input Name Direction Type Description

input_signal_1 Input logic Description of input_signal_1

input_signal_2 Input logic Description of input_signal_2

18.2.2 Output Table

Output Name Direction Type Description

output_signal_1 Output logic Description of output_signal_1

output_signal_2 Output logic Description of output_signal_2

18.3 Submodule Diagram

Include a diagram of the submodule here, showing its inputs, outputs, and how they are connected internally. Ensure
the diagram is clear and properly labeled to facilitate understanding.

18.4 SystemVerilog Implementation

Include a brief description of the SystemVerilog code for the submodule, highlighting key parts of the
implementation if needed for a clearer understanding.

Mkdocs allows a plethora of highlighting and cues for better code documentation. Read more.

18.4.1 Example Code

input 1

input 2

rst

clk

output 1

output 2

Tip

module Submodule (

input logic input_signal_1,

input logic input_signal_2,

output logic output_signal_1,

output logic output_signal_2

);

// Description of the submodule's functionality

// Module logic

always_ff @(posedge clk) begin

// Implementation of the functionality

end

endmodule

https://squidfunk.github.io/mkdocs-material/reference/code-blocks/?h=code

19 Authors

This documentation template has been developed as part of a graduation project in Computer Engineering. Below
are the authors responsible for the creation and development of this document:

Alejandro Chavarría

Alejandro Soto

This documentation template has been designed to provide a clear and comprehensive structure for the technical
description of RTL hardware modules. We extend our gratitude to all collaborators and sources that contributed to
the creation of this template.

For more information about the project, please refer to the associated GitHub organization OpenCEHardware.

https://github.com/openCEHardware/

